Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.05.04.490686

ABSTRACT

Aging is classically conceptualized as an ever-increasing trajectory of damage accumulation and loss of function, leading to increases in morbidity and mortality. However, recent in vitro studies have raised the possibility of age reversal. Here, we report that biological age is fluid and exhibits rapid changes in both directions. By applying advanced epigenetic aging clocks, we find that the biological age of young mice is increased by heterochronic parabiosis and restored following surgical detachment of animals. We also identify transient changes in biological age during major surgery, pregnancy, and severe COVID-19 in humans and/or mice. Together, these data show that biological age undergoes a rapid increase in response to diverse forms of stress, which is reversed following recovery from stress. Our study uncovers a new layer of aging dynamics that should be considered in future studies. Elevation of biological age by stress may be a quantifiable and actionable target for future interventions.


Subject(s)
COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.15.20060095

ABSTRACT

COVID-19 is an ongoing pandemic caused by the SARS-CoV-2 coronavirus that poses one of the greatest challenges to public health in recent years. SARS-CoV-2 is highly contagious and often leads to severe viral pneumonia with respiratory failure and death in the elderly and subjects with pre-existing conditions, but the reason for this age dependence is unclear. Here, we found that the case fatality rate for COVID-19 grows exponentially with age in Italy, Spain, South Korea, and China, with the doubling time approaching that of all-cause human mortality. In addition, men and those with multiple age-related diseases are characterized by increased mortality. Moreover, similar mortality patterns were found for all-cause pneumonia. We further report that the gene expression of ACE2, the SARS-CoV-2 receptor, grows in the lung with age, except for subjects on a ventilator. Together, our findings establish COVID-19 as an emergent disease of aging, and age and age-related diseases as its major risk factors. In turn, this suggests that COVID-19, and deadly respiratory diseases in general, may be targeted, in addition to therapeutic approaches that affect specific pathways, by approaches that target the aging process.


Subject(s)
Respiratory Tract Diseases , Pneumonia, Viral , Pneumonia , Death , COVID-19 , Respiratory Insufficiency
SELECTION OF CITATIONS
SEARCH DETAIL